Mobility Management (cont.)

- Mobile Location Code
 - Mobile Country Code
 - Mobile Network Code
 - Local Area Code
 - Routing Area Code
 - Cell Identity

- Location Update Procedure
 - A mobile device inform a cellular network whenever it moves from one location area to another
 - Mobiles are responsible for detecting location area code
Mobility Management (cont.)

- Periodic Location Update
 - Each mobile is required to regularly report its location at a set time interval

- Random Location Update
 - When a mobile moves from one location area to the next while not on a call
 - A stationary mobile that selects coverage from a cell in a different location area because of signal fading

- Roaming
 - A mobility management procedure of all cellular networks

Mobility Management (cont.)

- TMSI (Temporary Mobile Subscriber Identity)
 - Given to the mobile, the moment it is switched on
 - Local to location area
 - Has to be updated, each time the mobile moves to a new geographical area

- IMSI (International Mobile Subscriber Identity)
 - A unique number associated with GSM and UMTS network mobile phone users
 - The number is stored in SIM (Subscriber Identity Module) card
Mobility Management (cont.)

- Location Management Principles & Techniques
 - Location Registrars (databases)
 - Location Area
 - A set of base stations (10s or even 100s)
 - Grouped for optimized signaling
 - Search Operation
 - Update operation
 - Static Update Schemes
 - Dynamic Update Schemes

Simple Location Management Scheme (cont.)

- Search and Update Operations (mobile node m is switched on) – Static Update

(a) Registration upon mobile switching on
Simple Location Management Scheme (cont.)

- Search and Update Operations (mobile node moves from cell c to cell d)

(b) Registration upon cell handoff

Simple Location Management Scheme (cont.)

- Search and Update Operations (m in cell c & ON)

(c) Another mobile wants to find m – success case
Simple Location Management Scheme (cont.)

- Search and Update Operations (find m location; m is OFF)

 1. Where is mobile m?
 2. Is mobile m in your cell?
 3. Did not find m
 4. Failure to find m
 5. Mobile m’s trajectory

(d) Another mobile wants to find m – a failure case

Mobility Binding of a Mobile Node

- How to reduce the probability of failure (1 – max, 0 – min)?

- Enhancement 1 – reduce search cost through the # of updates performed at HLR (Home Location Registrar - <mobile,cell> bindings) per mobile node

 - t_U – the time when the binding was last updated

 - t_{TL} – the time to live (how long the binding is valid)

 - t_P – periodically update time < t_{TL}
Mobility Binding of a Mobile Node (cont.)

- How to reduce the probability of failure (1 – max, 0 – min)?

- Enhancement 2 – page neighbor cells
 - Increasing areas/cells for a maximum of k rings
 - If the speed of mobile node m is a maximum of v_m cells per second, then k (rings) can be set to
 \[k = v_m \times t_p, \text{ where } t_p \text{ – periodical update time} \]

Registration Area-based Location Management

- Used by Personal Communication Service – GSM (Global System for Mobile Communication)

- Service areas of PCs – the set of all cells (the union of coverage area of all the cells)
 - Partitioned into several Registration Areas (RAs) or Location Areas
 - Each RA consists of several contiguous communication cells
Registration Area-based Location Management (cont.)

- Cell c & d – in RA1
- Cell e – in RA2
- Node m moves from cell c to d
 - Average update cost is reduced, because the HLR is not informed when handoff involves cells belonging to same RAs
 - Search cost is increased, because all the cells in the RA have to be contacted for the exact location of the mobile node
Registration Area-based Location Management (cont.)

- 2-Level Hierarchy of Location Registrars
 - Local Location Registrars
 - Remote Location Registrars
- Used in GSM to avoid contacting all the cells in the RA to locate a mobile node
 - One Location Registrar ↔ 1 RA
 - One Location Registrar ↔ several RAs (in practice)
 - N Registration Areas (RA1, RA2, ..., RAn)
 - N Local Location Registrars (LR1, LR2, ..., LRn)
 - LRi is the Local Location Registrars of RAi
 - All others location registrars as Remote Location Registrars

Location Management

- Home Location Registrars
- Visitor Location Registers
- Forwarding Pointers
- Per-user Caching
Actual Address vs. Forwarding Pointer

- **Alice** – a resident of New York
 - Temporary move to Texas, in & moves quite often (every week)
 - Texas: Dallas → El Paso → Austin → Houston
 - Maintaining a forwarding location pointer: reduce the burden of Local Updating cost for Alice

- **Bob** – a resident of Arizona
 - Wants to contact Alice
 - Increasing the Remote Search Cost
 - Contact NY Registrar first, then contact Texas Registrar

- **Which Method is better?**
 - Actual Address at Home Location Registrar
 - Forwarding Pointer (Location pointer)

Alice: If Never Change address in TX *Maintain the Actual addr at Home LR: NY* Is better!

Bob: → NY LR

Figure 2.3 (1) Maintaining actual address at HLR (courtesy: http://www.infoplease.com/atlas/unitedstates.html)
Actual Address vs. Forwarding Pointer (cont.)

Alice moves often: Dallas, El Paso, Austin, Houston
* Maintain a location pointer at NY

Bob: contact Tx-LR for subsequent loc. info

Figure 2.3 (2) Maintaining forwarding pointer at Home Location Registrar (HLR)
(courtesy: http://www.infoplease.com/atlas/unitedstates.html)

A Chain of Forwarding Pointers

- **Alice**
 - Maintaining Forwarding Pointers of length 3
 - New York → Texas → Alaska → Alabama

- **Bob**
 - Trying to locate Alice
 - Start with New York registrar then follow the forwarding pointers
 - For 4 location registrars New York → Texas → Alaska → Alabama
A Chain of Forwarding Pointers (cont.)

Figure 2.4 Location management using a chain of forwarding pointers (courtesy: http://www.infoplease.com/atlas/unitedstates.html)

Static vs Dynamic Update Schemes

- **Static Update Scheme**
 - RA-based Location Update
 - Ignore dynamic behavior of mobile nodes
 - Boundaries of RAs are predetermined (static)
 - Cost: a lot of location update due to mobile nodes moving between two adjacent RAs in quick succession

- **Dynamic Update Schemes**
 - Time-based (periodic) Updates
 - Movement-based Updates
 - Distance-based Updates
Dynamic Update Schemes

- Time-based (periodic) Updates
 - Update Control Timer
 - The simplest method to implement

- Movement-based Updates
 - A mobile node updates its location
 - When?
 - It crosses a certain number of cell boundaries \(M \) since its last registration
 - Mechanism
 - Counting the number of Handoffs since the last update
 - Suitable for stationary users
Dynamic Update Schemes

- Distance-based Updates
 - A mobile node updates its location
 - When?
 - It moves a certain number of cells D away from the last cell at which it last updated its location
 - Need to know the topology of cellular network
 - Difficult to implement
 - Suitable for mobile user who moves within a locality

Dynamic Update Schemes (cont.)

- Per-User Location Caching (on the mobile)
 - Used to avoid accessing a roaming mobile’s location frequently
 - CMR (Call-to-Mobility Ratio) = \(\frac{\text{Avg rate at which a user received calls}}{\text{Avg rate at which the user moves}}\)
 - LCMR (Local CMR) = \(\frac{\text{Avg rate at which a user receives calls from a given Registration Area}}{\text{Avg rate at which the user moves}}\)
 - RCMR (Regional CMR) = Same definition as that of the LCMR
Replicating Location Information (cont.)

- Location info stored at one of the n Location Registrars
- Load balancing of Registrars
- Replicating info & methods
 - Redundancy – failed registrars (for example, hit by the storm)
 - How many replicas?
 - Full replication – increase the cost of updates
 - Partial replication – preferable
 - Methods of replication
 - Flat Organization
 - Hierarchical Organization

Replicating Location Information (cont.)

- Flat Organization
 - Given n Location Registrars
 - If a mobile node info can be stored at any LR, without any penalty in terms of access cost
 - An Example:
 - n = 16 LRs
 - k Replication Factor = 4 (k ≤ n)
 - Update starts at the randomly selected LR6 → LR10 → LR14 → LR2
 - Search for the same mobile node starts at randomly selected location registrar, sequentially, LR12 → LR13 → LR14 (found it)
Replicating Location Information (cont.)

- Flat Organization

Figure 2.6 Search and update in a location management system with flat organization.

- Hierarchical Organization
 - Multi-level (tree) of LRs
 - Leaf LR: has info on all the mobile nodes in the RA(s) associated with it
 - Root LR: stores info on all the mobile nodes in the system

- An Example
 - 15 LRs: LR0 … LR15 formed a balanced tree
 - 8 RAs (RA0, RA1, …, RA7)
 - Caller – LR4
 - Callee – LR1 (before move), LR2 (after move)
 - Location Info maintained at LR1, LR6, LR12, and LR14
Replicating Location Information (cont.)

- Hierarchical Organization

 - The Search Scenario (in Fig. 2.7)
 - Caller – LR4 in RA4
 - Callee mobile node – in RA1
 - Search operation
 - In the order: LR4, LR10, LR13, and LR14 (root)
 - Callee moves from RA1 to RA2
 - The Location info needs to be updated in: LR14, LR12;
 - Added to LR7 and LR2
 - Deleted from LR6 and LR1

Figure 2.7 Update and search in a Hierarchical (Tree) location management system.