HEAT TRANSFER

There are three modes of heat transfer: conduction, convection, and radiation.

BASIC HEAT TRANSFER RATE EQUATIONS

Conduction
Fourier’s Law of Conduction
\[\dot{Q} = -kA \frac{dT}{dx}, \text{where} \]
\[\dot{Q} = \text{rate of heat transfer (W)} \]
\[k = \text{the thermal conductivity [W/(m} \cdot \text{K}]} \]
\[A = \text{the surface area perpendicular to direction of heat transfer (m}^2) \]

Convection
Newton’s Law of Cooling
\[\dot{Q} = hA(T_w - T_\infty), \text{where} \]
\[h = \text{the convection heat transfer coefficient of the fluid [W/(m}^2 \cdot \text{K}]} \]
\[A = \text{the convection surface area (m}^2) \]
\[T_w = \text{the wall surface temperature (K)} \]
\[T_\infty = \text{the bulk fluid temperature (K)} \]

Radiation
The radiation emitted by a body is given by
\[\dot{Q} = \varepsilon \sigma A T^4, \text{where} \]
\[\varepsilon = \text{the emissivity of the body} \]
\[\sigma = \text{the Stefan-Boltzmann constant} \]
\[= 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4) \]
\[A = \text{the body surface area (m}^2) \]
\[T = \text{the absolute temperature (K)} \]

CONDUCTION

Conduction Through a Plane Wall
\[\dot{Q} = -kA \frac{T_2 - T_1}{L}, \text{where} \]
\[A = \text{wall surface area normal to heat flow (m}^2) \]
\[L = \text{wall thickness (m)} \]
\[T_1 = \text{temperature of one surface of the wall (K)} \]
\[T_2 = \text{temperature of the other surface of the wall (K)} \]
To evaluate Surface or Intermediate Temperatures:

\[\dot{Q} = \frac{T_s - T_2}{R_A} = \frac{T_2 - T_1}{R_B} \]

Steady Conduction with Internal Energy Generation

The equation for one-dimensional steady conduction is

\[\frac{d^2T}{dx^2} + \frac{Q_{gen}}{k} = 0, \]

where

\(Q_{gen} \) = the heat generation rate per unit volume (W/m³)

For a Plane Wall

\[T(x) = \frac{Q_{gen}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + \left(\frac{T_2 - T_{s1}}{2} \right) \left(\frac{x}{L} \right) + \left(\frac{T_{s1} - T_{s2}}{2} \right) \]

\(\dot{Q}_1' + \dot{Q}_2' = 2Q_{gen}L, \) where

\(\dot{Q}' = \) the rate of heat transfer per area (heat flux) (W/m²)

\[\dot{Q}_1' = k \left(\frac{dT}{dx} \right)_{-L} \text{ and } \dot{Q}_2' = k \left(\frac{dT}{dx} \right)_L \]

For a Long Circular Cylinder

\[T(r) = \frac{Q_{gen}r_0^2}{4k} \left(1 - \frac{r^2}{r_0^2} \right) + T_s \]

\[\dot{Q}' = \pi r_0^2 \dot{Q}_{gen}, \] where

\(\dot{Q}' = \) the heat transfer rate from the cylinder per unit length of the cylinder (W/m)

Transient Conduction Using the Lumped Capacitance Method

The lumped capacitance method is valid if

\[\frac{hV}{kA_s} \ll 1, \]

where

\(h = \) the convection heat transfer coefficient of the fluid [W/(m²·K)]

\(V = \) the volume of the body (m³)

\(k = \) thermal conductivity of the body [W/(m·K)]

\(A_s = \) the surface area of the body (m²)

Constant Fluid Temperature

If the temperature may be considered uniform within the body at any time, the heat transfer rate at the body surface is given by

\[\dot{Q} = hA_s (T - T_\infty) = -\rho V c_p \left(\frac{dT}{dt} \right), \]

where

\(T = \) the body temperature (K)

\(T_\infty = \) the fluid temperature (K)

\(\rho = \) the density of the body (kg/m³)

\(c_p = \) the heat capacity of the body [J/(kg·K)]

\(t = \) time (s)

The temperature variation of the body with time is

\[T - T_\infty = (T_i - T_\infty) e^{-\beta t}, \]

where

\[\beta = \frac{hA_s}{\rho V c_p} \]

and

\(\tau = \) time constant (s)

The total heat transferred (\(Q_{total} \)) up to time \(t \) is

\[Q_{total} = \rho V c_p (T_i - T), \]

where

\(T_i = \) initial body temperature (K)
Variable Fluid Temperature

If the ambient fluid temperature varies periodically according to the equation

\[T_\infty = T_{\infty,\text{mean}} + \frac{1}{2} (T_{\infty,\text{max}} - T_{\infty,\text{min}}) \cos(\omega t) \]

The temperature of the body, after initial transients have died away, is

\[T = \beta \frac{1}{2} (T_{\infty,\text{max}} - T_{\infty,\text{min}}) \cos \left(\omega t - \tan^{-1} \left(\frac{\omega}{\beta} \right) \right) + T_{\infty,\text{mean}} \]

Fins

For a straight fin with uniform cross section (assuming negligible heat transfer from tip),

\[\dot{Q} = \sqrt{hP}kA_c(T_b - T_\infty) \tanh(mL_c), \]

where

- \(h \) = the convection heat transfer coefficient of the fluid [W/(m²•K)]
- \(P \) = perimeter of exposed fin cross section (m)
- \(k \) = fin thermal conductivity [W/(m•K)]
- \(A_c \) = fin cross-sectional area (m²)
- \(T_b \) = temperature at base of fin (K)
- \(T_\infty \) = fluid temperature (K)
- \(m = \sqrt{\frac{hP}{kA_c}} \)
- \(L_c = L + \frac{A_c}{P}, \) corrected length of fin (m)

Rectangular Fin

\[P = 2w + 2t \]

\[A_c = wt \]

Pin Fin

\[P = \pi D \]

\[A_c = \frac{\pi D^2}{4} \]

\[T_\infty, h \]

\[T_b \]

\[w \]

\[L \]

\[t \]

\[D \]

CONVECTION

Terms

- \(D \) = diameter (m)
- \(\bar{h} \) = average convection heat transfer coefficient of the fluid [W/(m²•K)]
- \(L \) = length (m)
- \(\overline{Nu} \) = average Nusselt number
- \(Pr \) = Prandtl number = \(\frac{cp\mu}{k} \)
- \(u_m \) = mean velocity of fluid (m/s)
- \(u_\infty \) = free stream velocity of fluid (m/s)
- \(\mu \) = dynamic viscosity of fluid [kg/(s•m)]
- \(\rho \) = density of fluid (kg/m³)

External Flow

In all cases, evaluate fluid properties at average temperature between that of the body and that of the flowing fluid.

Flat Plate of Length \(L \) in Parallel Flow

\[\Re_L = \frac{\hat{u}_\infty L}{\mu} \]

\[\overline{Nu}_L = \frac{\bar{h}L}{k} = 0.6640 \Re_L^{1/3} Pr^{1/3} \quad (\Re_L < 10^5) \]

\[\overline{Nu}_L = \frac{\bar{h}L}{k} = 0.0366 \Re_L^{0.8} Pr^{1/3} \quad (\Re_L > 10^5) \]

Cylinder of Diameter \(D \) in Cross Flow

\[\Re_D = \frac{\hat{u}_\infty D}{\mu} \]

\[\overline{Nu}_D = \frac{\bar{h}D}{k} = C \Re_D^n Pr^{1/3}, \]

where

<table>
<thead>
<tr>
<th>(Re_D)</th>
<th>(C)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>0.989</td>
<td>0.330</td>
</tr>
<tr>
<td>4 - 40</td>
<td>0.911</td>
<td>0.385</td>
</tr>
<tr>
<td>40 - 400</td>
<td>0.683</td>
<td>0.466</td>
</tr>
<tr>
<td>4,000 - 40,000</td>
<td>0.193</td>
<td>0.618</td>
</tr>
<tr>
<td>40,000 - 250,000</td>
<td>0.0266</td>
<td>0.805</td>
</tr>
</tbody>
</table>

Flow Over a Sphere of Diameter, \(D \)

\[\overline{Nu}_D = \frac{\bar{h}D}{k} = 2.0 + 0.60 \Re_D^{1/3} Pr^{1/3}, \]

\((1 < \Re_D < 70,000; 0.6 < Pr < 400) \)

Internal Flow

\[\Re_D = \frac{\hat{u}_\infty D}{\mu} \]

Laminar Flow in Circular Tubes

For laminar flow (\(\Re_D < 2300 \)), fully developed conditions

\(Nu_D = 4.36 \) (uniform heat flux)

\(Nu_D = 3.66 \) (constant surface temperature)
For laminar flow (Re_D < 2300), combined entry length with constant surface temperature

\[Nu_D = 1.86 \left(\frac{Re_D Pr}{D^3} \right)^{1/3} \left(\frac{H_b}{H_s} \right)^{0.14} , \text{ where} \]

\(L = \text{length of tube (m)} \)
\(D = \text{tube diameter (m)} \)
\(\mu_b = \text{dynamic viscosity of fluid [kg/(s\cdot m)] at bulk temperature of fluid, } T_b \)
\(\mu_s = \text{dynamic viscosity of fluid [kg/(s\cdot m)] at inside surface temperature of the tube, } T_s \)

Turbulent Flow in Circular Tubes
For turbulent flow (Re_D > 10^4, Pr > 0.7) for either uniform surface temperature or uniform heat flux condition, Sieder-Tate equation offers good approximation:

\[Nu_D = 0.027 Re_D^{0.8} Pr^{1/3} \left(\frac{H_b}{H_s} \right)^{0.14} \]

Non-Circular Ducts
In place of the diameter, D, use the equivalent (hydraulic) diameter \((D_H)\) defined as

\[D_H = \frac{4 \times \text{cross-sectional area}}{\text{wetted perimeter}} \]

Circular Annulus (D_s > D_i)
In place of the diameter, D, use the equivalent (hydraulic) diameter \((D_H)\) defined as

\[D_H = D_s - D_i \]

Liquid Metals (0.003 < Pr < 0.05)

\[Nu_D = 6.3 + 0.0167 Re_D^{0.8} Pr^{0.93} \text{ (uniform heat flux)} \]
\[Nu_D = 7.0 + 0.025 Re_D^{0.8} Pr^{0.8} \text{ (constant wall temperature)} \]

Condensation of a Pure Vapor
On a Vertical Surface

\[\bar{Nu}_L = \frac{\bar{h}L}{k} = 0.943 \left[\frac{\rho_l^2 g h_L L^3}{\mu_l k_l (T_{sat} - T_s)} \right]^{0.25} , \text{ where} \]

\(\rho_l = \text{density of liquid phase of fluid (kg/m}^3\rangle \)
\(g = \text{gravitational acceleration (9.81 m/s}^2\rangle \)
\(h_L = \text{latent heat of vaporization [J/kg]} \)
\(L = \text{length of surface [m]} \)
\(\mu_l = \text{dynamic viscosity of liquid phase of fluid [kg/(s\cdot m)]} \)
\(k_l = \text{thermal conductivity of liquid phase of fluid [W/(m\cdot K)]} \)
\(T_{sat} = \text{saturation temperature of fluid [K]} \)
\(T_s = \text{temperature of vertical surface [K]} \)

Note: Evaluate all liquid properties at the average temperature between the saturated temperature, \(T_{sat}\), and the surface temperature, \(T_s\).

Outside Horizontal Tubes

\[Nu_D = \frac{\bar{h}D}{k} = 0.729 \left[\frac{\rho_l^2 g h_L D^3}{\mu_l k_l (T_{sat} - T_s)} \right]^{0.25} , \text{ where} \]

\(D = \text{tube outside diameter (m)} \)

Note: Evaluate all liquid properties at the average temperature between the saturated temperature, \(T_{sat}\), and the surface temperature, \(T_s\).

Natural (Free) Convection
Vertical Flat Plate in Large Body of Stationary Fluid
Equation also can apply to vertical cylinder of sufficiently large diameter in large body of stationary fluid.

\[h = C \left(\frac{k}{L} \right) Ra_L^n , \text{ where} \]

\(L = \text{the length of the plate (cylinder) in the vertical direction} \)
\(Ra_L = \text{Rayleigh Number} = \frac{g \beta (T_s - T_\infty) L^3}{\nu^2 \Pr} \)
\(T_s = \text{surface temperature (K)} \)
\(T_\infty = \text{fluid temperature (K)} \)
\(\beta = \text{coefficient of thermal expansion (1/K)} \)

(For an ideal gas: \(\beta = \frac{2}{T_s + T_\infty} \) with \(T \) in absolute temperature)

\(\nu = \text{kinematic viscosity (m}^2/\text{s)} \)

<table>
<thead>
<tr>
<th>Range of Ra_L</th>
<th>C</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^4 \text{ - } 10^9)</td>
<td>0.59</td>
<td>1/4</td>
</tr>
<tr>
<td>(10^9 \text{ - } 10^{13})</td>
<td>0.10</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Long Horizontal Cylinder in Large Body of Stationary Fluid

\[\bar{h} = C \left(\frac{k}{D} \right) Ra_D^n , \text{ where} \]

\[Ra_D = \frac{g \beta (T_s - T_\infty) D^3}{\nu^2 \Pr} \]

<table>
<thead>
<tr>
<th>Ra_D</th>
<th>C</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-3} \text{ - } 10^{-2})</td>
<td>1.02</td>
<td>0.148</td>
</tr>
<tr>
<td>(10^{2} \text{ - } 10^{4})</td>
<td>0.850</td>
<td>0.188</td>
</tr>
<tr>
<td>(10^{4} \text{ - } 10^{7})</td>
<td>0.480</td>
<td>0.250</td>
</tr>
<tr>
<td>(10^{7} \text{ - } 10^{12})</td>
<td>0.125</td>
<td>0.333</td>
</tr>
</tbody>
</table>

Heat Exchangers
The rate of heat transfer in a heat exchanger is

\[Q = U A F \Delta T_{lm} \text{ where} \]

\(A = \text{any convenient reference area (m}^2\rangle \)
\(F = \text{heat exchanger configuration correction factor} \)
\((F = 1 \text{ if temperature change of one fluid is negligible)} \)
\(U = \text{overall heat transfer coefficient based on area } A \text{ and the log mean temperature difference [W/(m}^2\cdot\text{K}]} \)
\(\Delta T_{lm} = \text{log mean temperature difference (K)} \)
Heat Exchangers (cont.)

Overall Heat Transfer Coefficient for Concentric Tube and Shell-and-Tube Heat Exchangers

\[
\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{R_{fi}}{A_i} + \frac{\ln \left(\frac{D_i}{D_o} \right)}{2 \pi k L} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o},
\]

where

- \(A_i \) = inside area of tubes (m²)
- \(A_o \) = outside area of tubes (m²)
- \(D_i \) = inside diameter of tubes (m)
- \(D_o \) = outside diameter of tubes (m)
- \(h_i \) = convection heat transfer coefficient for inside of tubes [W/(m²•K)]
- \(h_o \) = convection heat transfer coefficient for outside of tubes [W/(m²•K)]
- \(k \) = thermal conductivity of tube material [W/(m•K)]
- \(R_{fi} \) = fouling factor for inside of tube [(m²•K)/W]
- \(R_{fo} \) = fouling factor for outside of tube [(m²•K)/W]

Log Mean Temperature Difference (LMTD)

For counterflow in tubular heat exchangers

\[
\Delta T_{lm} = \frac{(T_{Ho} - T_{Ci}) - (T_{Hi} - T_{Co})}{\ln \left(\frac{T_{Ho} - T_{Ci}}{T_{Hi} - T_{Co}} \right)}
\]

For parallel flow in tubular heat exchangers

\[
\Delta T_{lm} = \frac{(T_{Ho} - T_{Co}) - (T_{Hi} - T_{Ci})}{\ln \left(\frac{T_{Ho} - T_{Co}}{T_{Hi} - T_{Ci}} \right)}
\]

\(\Delta T_{lm} \) = log mean temperature difference (K)

\(T_{Hi} \) = inlet temperature of the hot fluid (K)

\(T_{Ho} \) = outlet temperature of the hot fluid (K)

\(T_{Ci} \) = inlet temperature of the cold fluid (K)

\(T_{Co} \) = outlet temperature of the cold fluid (K)

Heat Exchanger Effectiveness, \(\varepsilon \)

\[
\varepsilon = \frac{Q}{Q_{\text{max}}} = \frac{\text{actual heat transfer rate}}{\text{maximum possible heat transfer rate}}
\]

\[
\varepsilon = \frac{C_H (T_{Hi} - T_{Ho})}{C_{\text{min}} (T_{Hi} - T_{Ci})} \quad \text{or} \quad \varepsilon = \frac{C_C (T_{Co} - T_{Ci})}{C_{\text{min}} (T_{Hi} - T_{Ci})}
\]

where

\(C = m c_p \) = heat capacity rate (W/K)

\(C_{\text{min}} \) = smaller of \(C_C \) or \(C_H \)

Number of Transfer Units (NTU)

\[
NTU = \frac{UA}{C_{\text{min}}}
\]

Effectiveness-NTU Relations

\[
C_r = \frac{C_{\text{min}}}{C_{\text{max}}} = \text{heat capacity ratio}
\]

For parallel flow concentric tube heat exchanger

\[
\varepsilon = \frac{1 - \exp\left[-NTU(1 + C_r) \right]}{1 + C_r}
\]

\[
NTU = -\log \left(\frac{1 - \varepsilon (1 + C_r)}{C_r} \right)
\]

For counterflow concentric tube heat exchanger

\[
\varepsilon = \frac{1 - \exp\left[-NTU(1 - C_r) \right]}{1 - C_r \exp\left[-NTU(1 - C_r) \right]}
\]

\[
NTU = \frac{\frac{\varepsilon}{C_r - 1}}{\frac{1}{C_r} - 1}
\]

RADIATION

Types of Bodies

Any Body

\(\alpha + \rho + \tau = 1 \), where

\(\alpha \) = absorptivity (ratio of energy absorbed to incident energy)

\(\rho \) = reflectivity (ratio of energy reflected to incident energy)

\(\tau \) = transmissivity (ratio of energy transmitted to incident energy)

Opaque Body

For an opaque body: \(\alpha + \rho = 1 \)

Gray Body

A gray body is one for which

\(\alpha = \varepsilon, \quad 0 < \alpha < 1; \quad 0 < \varepsilon < 1 \), where

\(\varepsilon \) = the emissivity of the body

For a gray body: \(\varepsilon + \rho = 1 \)

Real bodies are frequently approximated as gray bodies.

Black Body

A black body is defined as one which absorbs all energy incident upon it. It also emits radiation at the maximum rate for a body of a particular size at a particular temperature. For such a body

\(\alpha = \varepsilon = 1 \)
Shape Factor (View Factor, Configuration Factor) Relations

Reciprocity Relations

\[A_i F_{ij} = A_j F_{ji}, \]
where
\[A_i = \text{surface area (m}^2\text{)} \text{ of surface } i \]

\[F_{ij} = \text{shape factor (view factor, configuration factor); fraction of the radiation leaving surface } i \text{ that is intercepted by surface } j; \ 0 \leq F_{ij} \leq 1 \]

Summation Rule for N Surfaces

\[\sum_{j=1}^{N} F_{ij} = 1 \]

Net Energy Exchange by Radiation between Two Bodies

Body Small Compared to its Surroundings

\[\dot{Q}_{12} = \varepsilon A \sigma (T_1^4 - T_2^4), \]
where
\[\dot{Q}_{12} = \text{the net heat transfer rate from the body (W)} \]
\[\varepsilon = \text{the emissivity of the body} \]
\[\sigma = \text{the Stefan-Boltzmann constant} \]
\[[\sigma = 5.67 \times 10^{-8} \text{ W/(m}^2\text{K}^4)] \]
\[A = \text{the body surface area (m}^2\text{)} \]
\[T_1 = \text{the absolute temperature [K] of the body surface} \]
\[T_2 = \text{the absolute temperature [K] of the surroundings} \]

Net Energy Exchange by Radiation between Two Black Bodies

The net energy exchange by radiation between two black bodies that see each other is given by

\[\dot{Q}_{12} = A_1 F_{12} \sigma (T_1^4 - T_2^4) \]

Net Energy Exchange by Radiation between Two Diffuse-Gray Surfaces that Form an Enclosure

Generalized Cases

\[\dot{Q}_{12} = \frac{\sigma (T_1^4 - T_2^4)}{\frac{1}{\varepsilon \varepsilon A_1} + \frac{1}{A_1 F_{1R}} + \frac{1}{\varepsilon \varepsilon A_2} \left(\frac{1}{A_2 F_{2R}} \right)} \]