PROPERTIES OF SINGLE-COMPONENT SYSTEMS

Nomenclature
1. Intensive properties are independent of mass.
2. Extensive properties are proportional to mass.
3. Specific properties are lower case (extensive/mass).

State Functions (properties)
- Absolute Pressure, \(p \) (lbf/in\(^2\) or Pa)
- Absolute Temperature, \(T \) (\(^\circ\)R or K)
- Specific Volume, \(v \) (ft\(^3\)/lbm or m\(^3\)/kg)
- Internal Energy, \(u \) (usually in Btu/lbm or kJ/kg)
- Enthalpy, \(h = u + PV \) (same units as \(u \))
- Entropy, \(s \) [Btu/(lbmol-\(^\circ\)R) or kJ/(kgmol-K)]
- Gibbs Free Energy, \(g = h - TS \) (same units as \(u \))
- Helmholtz Free Energy, \(a = u - TS \) (same units as \(u \))

Heat Capacity at Constant Pressure, \(c_p = \left(\frac{\partial h}{\partial T} \right)_P \)
Heat Capacity at Constant Volume, \(c_v = \left(\frac{\partial u}{\partial T} \right)_V \)

Quality \(x \) (applies to liquid-vapor systems at saturation) is defined as the mass fraction of the vapor phase:
\[x = \frac{m_g}{m_g + m_l}, \]
where
\(m_g = \) mass of vapor, and \(m_l = \) mass of liquid.

Specific volume of a two-phase system can be written:
\[v = xv_g + (1-x)v_f \]
\(v_f = \) specific volume of saturated liquid,
\(v_g = \) specific volume of saturated vapor, and
\(v_{fg} = \) specific volume change upon vaporization.

Similar expressions exist for \(u, h, \) and \(s \):
\[u = xu_g + (1-x)u_f, \]
\[h = xh_g + (1-x)h_f, \]
\[s = xs_g + (1-x)s_f. \]

For a simple substance, specification of any two intensive, independent properties is sufficient to fix all the rest.

For an ideal gas, \(PV = RT \) or \(PV = mRT \), and
\[P_1V_1/T_1 = P_2V_2/T_2, \]
where
\(p = \) pressure,
\(v = \) specific volume,
\(m = \) mass of gas,
\(R = \) gas constant, and
\(T = \) absolute temperature.

R is specific to each gas but can be found from
\[R = \frac{\bar{R}}{(mol. wt.)}, \]
where
\[\bar{R} = \text{the universal gas constant} = 1.545 \text{ ft-lbf/(lbmol-}^\circ\text{R)} = 8,314 \text{ J/(kmol-K)}. \]

For Ideal Gases, \(c_p - c_v = R \)

Also, for Ideal Gases:
\[\left(\frac{\partial h}{\partial v} \right)_T = 0 \quad \text{and} \quad \left(\frac{\partial u}{\partial v} \right)_T = 0 \]

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:

\[\Delta u = c_u \Delta T; \]
\[\Delta h = c_p \Delta T \]
\[\Delta s = c_p \ln \left(\frac{T_2}{T_1} \right) - R \ln \left(\frac{P_2}{P_1} \right); \] and
\[\Delta s = c_v \ln \left(\frac{T_2}{T_1} \right) + R \ln \left(\frac{v_2}{v_1} \right). \]

For heat capacities that are temperature dependent, the value to be used in the above equations for \(\Delta h \) is known as the mean heat capacity (\(\bar{c}_p \)) and is given by
\[\bar{c}_p = \left[\frac{\int_{T_1}^{T_2} \frac{c_p}{v} dT}{T_2 - T_1} \right] \]

Also, for constant entropy processes:
\[P_1V_1^{(k-1)} = T_1V_1^{(k-1)} = T_2V_2^{(k-1)} \]

FIRST LAW OF THERMODYNAMICS

The First Law of Thermodynamics is a statement of conservation of energy in a thermodynamic system. The net energy crossing the system boundary is equal to the change in energy inside the system.

Heat \(Q \) is energy transferred due to temperature difference and is considered positive if it is inward or added to the system.

Closed Thermodynamic System
No mass crosses system boundary
\[Q - W = \Delta U + \Delta KE + \Delta PE \]
where
\(\Delta KE = \) change in kinetic energy, and
\(\Delta PE = \) change in potential energy.

Energy can cross the boundary only in the form of heat or work. Work can be boundary work, \(w_b \), or other work forms (electrical work, etc.)

Work \(W \left(w = \frac{W}{m} \right) \) is considered positive if it is outward or work done by the system.

Reversible boundary work is given by \(w_b = \int P \, dv \).
Special Cases of Closed Systems

Constant Pressure (Charles' Law):
\[w_b = P \Delta v \]
(ideal gas) \(T/v \) = constant

Constant Volume:
\[w_b = 0 \]
(ideal gas) \(T/P \) = constant

Isentropic (ideal gas),
\[P_v^{k_n} = \text{constant:} \]
\[w = (P_2v_2 - P_1v_1)/(1 - k) = R \left(T_2 - T_1 \right)/(1 - k) \]

Constant Temperature (Boyle's Law):
\[w_b = RT \ln \left(v_2/v_1 \right) = RT \ln \left(P_1/P_2 \right) \]

Polytropic (ideal gas),
\[P_v^{n} = \text{constant:} \]
\[w = (P_2v_2 - P_1v_1)/(1 - n) \]

Open Thermodynamic System

Mass to cross the system boundary

There is flow work (PV) done by mass entering the system. The reversible flow work is given by:
\[w_{rev} = -\int v \, dP + \Delta KE + \Delta PE \]

First Law applies whether or not processes are reversible.

FIRST LAW (energy balance)
\[\sum \dot{m} \left[h_i + V_i^2/2 + gZ_i \right] - \sum \dot{m} \left[h_e + V_e^2/2 + gZ_e \right] \]
\[+ \dot{Q}_{in} - \dot{W}_{net} = d \left(m_s u_s \right)/dt \]

Where
\[\dot{W}_{net} = \text{rate of net or shaft work transfer,} \]
\[m_s = \text{mass of fluid within the system,} \]
\[u_s = \text{specific internal energy of system,} \]
\[\dot{Q} = \text{rate of heat transfer (neglecting kinetic and potential energy).} \]

Special Cases of Open Systems

Constant Volume:
\[w_{rev} = -v \left(P_2 - P_1 \right) \]

Constant Pressure:
\[w_{rev} = 0 \]

Constant Temperature:
\[w_{rev} = RT \ln \left(v_2/v_1 \right) = RT \ln \left(P_1/P_2 \right) \]

Isentropic (ideal gas):
\[P_v^{k_n} = \text{constant:} \]
\[w_{rev} = k \left(P_2v_2 - P_1v_1 \right)/(1 - k) = kR \left(T_2 - T_1 \right)/(1 - k) \]

Polytropic:
\[P_v^{n} = \text{constant:} \]
\[w_{rev} = n \left(P_2v_2 - P_1v_1 \right)/(1 - n) \]

Steady-State Systems

The system does not change state with time. This assumption is valid for steady operation of turbines, pumps, compressors, throttling valves, nozzles, and heat exchangers, including boilers and condensers.

\[\sum \dot{m}_i \left(h_i + V_i^2/2 + gZ_i \right) - \sum \dot{m}_e \left(h_e + V_e^2/2 + gZ_e \right) \]
\[+ \dot{Q}_{in} - \dot{W}_{out} = 0 \]

\[\sum \dot{m}_i = \sum \dot{m}_e \]

Where
\[\dot{m} = \text{mass flow rate (subscripts i and e refer to inlet and exit states of system),} \]
\[g = \text{acceleration of gravity,} \]
\[Z = \text{elevation,} \]
\[V = \text{velocity,} \]
\[W = \text{rate of work.} \]

Special Cases of Steady-Flow Energy Equation

Nozzles, Diffusers: Velocity terms are significant. No elevation change, no heat transfer, and no work. Single mass stream.
\[h_i + V_i^2/2 = h_e + gZ_e + V_e^2/2 \]

Efficiency (nozzle) = \[\frac{h_i - h_e}{2(h_i - h_{es})} \]

Turbines, Pumps, Compressors: Often considered adiabatic (no heat transfer). Velocity terms usually can be ignored. There are significant work terms and a single mass stream.
\[h_i = h_e + w \]

Efficiency (turbine) = \[\frac{h_i - h_e}{h_i - h_{es}} \]

Efficiency (compressor, pump) = \[\frac{h_{es} - h_i}{h_e - h_i} \]

Throttling Valves and Throttling Processes: No work, no heat transfer, and single-mass stream. Velocity terms are often insignificant.
\[h_i + q = h_e \]

Boilers, Condensers, Evaporators, One Side in a Heat Exchanger: Heat transfer terms are significant. For a single-mass stream, the following applies:
\[h_i + q = h_e \]

Heat Exchangers: No heat or work. Two separate flow rates \(\dot{m}_1 \) and \(\dot{m}_2 \):
\[\dot{m}_1 (h_{i1} - h_{i2}) = \dot{m}_2 (h_{e2} - h_{e1}) \]
Mixers, Separators, Open or Closed Feedwater Heaters:

\[\sum m_e h_e = \sum m_i h_i \quad \text{and} \quad \sum m_i = \sum m_e \]

BASIC CYCLES

Heat engines take in heat \(Q_H \) at a high temperature \(T_H \), produce a net amount of work \(W \), and reject heat \(Q_L \) at a low temperature \(T_L \). The efficiency \(\eta \) of a heat engine is given by:

\[\eta = \frac{W}{Q_H} = \frac{(Q_H - Q_L)}{Q_H} \]

The most efficient engine possible is the **Carnot Cycle**. Its efficiency is given by:

\[\eta_c = \frac{(T_H - T_L)}{T_H} \]

where \(T_H \) and \(T_L \) are absolute temperatures (Kelvin or Rankine).

The following heat-engine cycles are plotted on \(P-v \) and \(T-s \) diagrams (see page 61):

- Carnot
- Otto
- Rankine

Refrigeration Cycles are the reverse of heat-engine cycles. Heat is moved from low to high temperature requiring work \(W \). Cycles can be used either for refrigeration or as heat pumps.

Coefficient of Performance (COP) is defined as:

- For heat pumps: \(\text{COP} = \frac{Q_H}{W} \)
- For refrigerators and air conditioners: \(\text{COP} = \frac{Q_L}{W} \)

Upper limit of COP is based on reversed Carnot Cycle:

\[\text{COP}_c = \frac{1}{\left(\frac{T_H}{T_H - T_L} \right)} \]

1 ton refrigeration = 12,000 Btu/hr = 3,516 W

IDEAL GAS MIXTURES

\(i = 1, 2, \ldots, n \) constituents. Each constituent is an ideal gas.

Mole Fraction: \(N_i \) = number of moles of component \(i \)

\[x_i = \frac{N_i}{N}; N = \sum N_i; \sum x_i = 1 \]

Mass Fraction: \(y_i = m_i/m; m = \sum m_i; \sum y_i = 1 \)

Molecular Weight: \(M = m/N = \sum x_i M_i \)

Gas Constant: \(R = \frac{M}{\text{Molar}} \)

To convert mole fractions \(x_i \) to mass fractions \(y_i \):

\[y_i = \frac{x_i M_i}{\sum (x_i M_i)} \]

To convert mass fractions to mole fractions:

\[x_i = \frac{y_i / M_i}{\sum (y_i / M_i)} \]

Partial Pressures

\[p = \sum p_i; p_i = \frac{m_i R T}{V} \]

PSYCHROMETRICS

We deal here with a mixture of dry air (subscript \(a \)) and water vapor (subscript \(v \)):

\[p = p_a + p_v \]

Specific Humidity (absolute humidity, humidity ratio) \(\omega \):

\[\omega = \frac{m_v}{m_a} \]

\(m_v = \) mass of water vapor and \(m_a = \) mass of dry air.

\[\omega = 0.622 \frac{p_v}{p_a} = 0.622 \frac{p_v}{(p - p_v)} \]

Relative Humidity (rh) \(\phi \):

\[\phi = \frac{m_v}{m_{gs}} = \frac{p_v}{p_{gs}} \]

\(m_{gs} = \) mass of vapor at saturation, and \(p_{gs} = \) saturation pressure at \(T \).

Enthalpy \(h \):

\[h = h_a + \omega h_v \]

Dew-Point Temperature \(T_{dp} \):

\[T_{dp} = T_{sat} \text{ at } p_g = p_v \]

Wet-bulb temperature \(T_{wb} \) is the temperature indicated by a thermometer covered by a wick saturated with liquid water and in contact with moving air.

Humidity Volume: Volume of moist air/mass of dry air.

Psychrometric Chart

A plot of specific humidity as a function of dry-bulb temperature plotted for a value of atmospheric pressure. (See chart at end of section.)

PHASE RELATIONS

Clapeyron Equation for Phase Transitions:

\[\left(\frac{dp}{dT} \right)_{sat} = \frac{h_{fg}}{V_{fg}} = \frac{5_{fg}}{v_{fg}}, \]

\(h_{fg} = \) enthalpy change for phase transitions,
\(v_{fg} = \) volume change,
\(s_{fg} = \) entropy change,
\(T = \) absolute temperature, and
\((dP/dT)_{sat} = \) slope of vapor-liquid saturation line.
Gibbs Phase Rule
\[P + F = C + 2, \]
where
\[P = \text{number of phases making up a system}, \]
\[F = \text{degrees of freedom}, \]
\[C = \text{number of components in a system}. \]

BINARY PHASE DIAGRAMS
Allows determination of (1) what phases are present at equilibrium at any temperature and average composition, (2) the compositions of those phases, and (3) the fractions of those phases.

- Eutectic reaction (liquid \rightarrow two solid phases)
- Eutectoid reaction (solid \rightarrow two solid phases)
- Peritectic reaction (liquid + solid \rightarrow solid)
- Pertectoid reaction (two solid phases \rightarrow solid)

Lever Rule
The following phase diagram and equations illustrate how the weight of each phase in a two-phase system can be determined:

\[
\text{wt \% } \alpha = \frac{x_{\beta} - x}{x_{\beta} - x_{\alpha}} \times 100
\]
\[
\text{wt \% } \beta = \frac{x - x_{\alpha}}{x_{\beta} - x_{\alpha}} \times 100
\]

(In diagram, L = liquid) If \(x \) = the average composition at temperature \(T \), then

Iron-Iron Carbide Phase Diagram

COMBUSTION PROCESSES
First, the combustion equation should be written and balanced. For example, for the stoichiometric combustion of methane in oxygen:

\[
\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O}
\]

Combustion in Air
For each mole of oxygen, there will be 3.76 moles of nitrogen. For stoichiometric combustion of methane in air:

\[
\text{CH}_4 + 2 \text{O}_2 + 2(3.76) \text{N}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} + 7.52 \text{N}_2
\]

Combustion in Excess Air
The excess oxygen appears as oxygen on the right side of the combustion equation.

Incomplete Combustion
Some carbon is burned to create carbon monoxide (CO).

\[
\text{Air-Fuel Ratio (A/F)}: A/F = \frac{\text{mass of air}}{\text{mass of fuel}}
\]

Stoichiometric (theoretical) air-fuel ratio is the air-fuel ratio calculated from the stoichiometric combustion equation.

\[
\text{Percent Theoretical Air} = \left(\frac{A/F}_{\text{actual}} \right) \times 100
\]
\[
\text{Percent Excess Air} = \left(\frac{A/F}_{\text{actual}} - (A/F)_{\text{stoichiometric}} \right) \times 100
\]

SECOND LAW OF THERMODYNAMICS

Thermal Energy Reservoirs
\[\Delta S_{\text{reservoir}} = \frac{Q}{T_{\text{reservoir}}} \], where
\(Q \) is measured with respect to the reservoir.

Kelvin-Planck Statement of Second Law
No heat engine can operate in a cycle while transferring heat with a single heat reservoir.

\textbf{COROLLARY} to Kelvin-Planck: No heat engine can have a higher efficiency than a Carnot cycle operating between the same reservoirs.

Clausius' Statement of Second Law
No refrigeration or heat pump cycle can operate without a net work input.

\textbf{COROLLARY:} No refrigerator or heat pump can have a higher COP than a Carnot cycle refrigerator or heat pump.

VAPOR-LIQUID MIXTURES

Henry's Law at Constant Temperature
At equilibrium, the partial pressure of a gas is proportional to its concentration in a liquid. Henry's Law is valid for low concentrations; i.e., \(x \approx 0 \).
\[p_i = p y_i = h x_i \text{, where} \]
h = Henry's Law constant,
p_i = partial pressure of a gas in contact with a liquid,
x_i = mol fraction of the gas in the liquid,
y_i = mol fraction of the gas in the vapor, and
p = total pressure.

Raoult's Law for Vapor-Liquid Equilibrium
Valid for concentrations near 1; i.e., \(x_i \approx 1 \).
\[p_i = x_i p_i^* \text{, where} \]
p_i = partial pressure of component \(i \),
x_i = mol fraction of component \(i \) in the liquid, and
p_i^* = vapor pressure of pure component \(i \) at the temperature of the mixture.

\textbf{ENTROPY}
\[ds = \frac{1}{T} \delta Q_{\text{rev}} \]
\[s_2 - s_1 = \int_1^2 \left(\frac{1}{T} \right) \delta Q_{\text{rev}} \]

\textbf{Inequality of Clausius}
\[\int_1^2 \left(\frac{1}{T} \right) \delta Q \leq s_2 - s_1 \]

\textbf{Isothermal, Reversible Process}
\[\Delta s = s_2 - s_1 = \frac{Q}{T} \]

Isentropic Process
\(\Delta s = 0; ds = 0 \)
A reversible adiabatic process is isentropic.

Adiabatic Process
\[\delta Q = 0; \Delta s \geq 0 \]

\textbf{Increase of Entropy Principle}
\[\Delta s_{\text{total}} = \Delta s_{\text{system}} + \Delta s_{\text{surroundings}} \geq 0 \]
\[\Delta s_{\text{total}} = \sum m_{\text{out}} s_{\text{out}} - \sum m_{\text{in}} s_{\text{in}} - \sum \left(\frac{Q_{\text{external}}}{T_{\text{external}}} \right) \geq 0 \]

\textbf{Temperature-Entropy (T-s) Diagram}

\[Q_{\text{rev}} = \int_1^2 T \, ds \]

\textbf{Entropy Change for Solids and Liquids}
\[ds = c \left(\frac{dT}{T} \right) \]
\[s_2 - s_1 = \int c \left(\frac{dT}{T} \right) = c_{\text{mean}} \ln \left(\frac{T_2}{T_1} \right) \],
where \(c \) equals the heat capacity of the solid or liquid.

\textbf{Irreversibility}
\[I = w_{\text{rev}} - w_{\text{actual}} \]

\textbf{EXERGY}
Exergy is the portion of total energy available to do work.

\textbf{Closed-System Availability}
(no chemical reactions)
\[\phi = (u - u_o) - T_o (s - s_o) + p_o (v - v_o) \]
where the subscript "o" designates environmental conditions
\(w_{\text{reversible}} = \phi_1 - \phi_2 \)

\textbf{Open-System Availability}
\[\psi = (h - h_o) - T_o (s - s_o) + V^2/2 + g z \]
\[w_{\text{reversible}} = \psi_1 - \psi_2 \]

\textbf{Gibbs Free Energy,} \(\Delta G \)
Energy released or absorbed in a reaction occurring reversibly at constant pressure and temperature.

\textbf{Helmholtz Free Energy,} \(\Delta A \)
Energy released or absorbed in a reaction occurring reversibly at constant volume and temperature.
COMMON THERMODYNAMIC CYCLES

Carnot Cycle
\[\eta = 1 - \frac{T_L}{T_H} \]

Reversed Carnot
\[\eta = 1 - r^1 - k \]

Otto Cycle
\[\eta = 1 - r^1 - k \]
\[r = \frac{v_1}{v_2} \]

Rankine Cycle
\[\eta = \left(\frac{h_3 - h_4}{h_3 - h_2} \right) \]

Refrigeration
\[\text{COP}_{\text{ref}} = \frac{h_1 - h_4}{h_2 - h_1} \]
\[\text{COP}_{\text{HP}} = \frac{h_2 - h_3}{h_2 - h_1} \]
<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Sat. Press. kPa</th>
<th>Specific Volume m³/kg</th>
<th>Internal Energy kJ/kg</th>
<th>Enthalpy kJ/kg</th>
<th>Entropy kJ/(kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.00</td>
<td>0.0113</td>
<td>0.0010000000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>05.00</td>
<td>0.0872</td>
<td>0.00001471273600000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.00</td>
<td>0.1227</td>
<td>0.0000106380000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15.00</td>
<td>0.1705</td>
<td>0.0000177039900000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20.00</td>
<td>0.2339</td>
<td>0.0000157830000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>25.00</td>
<td>0.3169</td>
<td>0.0000133620000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30.00</td>
<td>0.4628</td>
<td>0.0000122500000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>35.00</td>
<td>0.6288</td>
<td>0.0000112500000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>40.00</td>
<td>0.7848</td>
<td>0.0000105000000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>45.00</td>
<td>0.9393</td>
<td>0.0000101000000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>50.00</td>
<td>1.1249</td>
<td>0.0000092000000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>55.00</td>
<td>1.5758</td>
<td>0.0000079580000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>60.00</td>
<td>1.9940</td>
<td>0.0000067700000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>65.00</td>
<td>2.5030</td>
<td>0.0000056190000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>70.00</td>
<td>3.1919</td>
<td>0.0000045020000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>75.00</td>
<td>3.8581</td>
<td>0.0000037500000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>80.00</td>
<td>4.7399</td>
<td>0.0000030900000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>85.00</td>
<td>5.8713</td>
<td>0.0000025100000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>90.00</td>
<td>7.0171</td>
<td>0.0000020100000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>95.00</td>
<td>8.4555</td>
<td>0.0000014900000000000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Superheated Water Tables

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>v m³/kg</th>
<th>u kJ/kg</th>
<th>h kJ/kg</th>
<th>s kJ/(kg·K)</th>
<th>Temp. °C</th>
<th>v m³/kg</th>
<th>u kJ/kg</th>
<th>h kJ/kg</th>
<th>s kJ/(kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>14.674</td>
<td>2437.9</td>
<td>2584.7</td>
<td>8.1502</td>
<td>500</td>
<td>35.679</td>
<td>3132.3</td>
<td>3489.1</td>
<td>9.878</td>
</tr>
<tr>
<td>110</td>
<td>14.869</td>
<td>2443.9</td>
<td>2592.6</td>
<td>8.1749</td>
<td>600</td>
<td>40.295</td>
<td>3302.5</td>
<td>3705.4</td>
<td>10.1608</td>
</tr>
<tr>
<td>120</td>
<td>17.196</td>
<td>2515.5</td>
<td>2687.5</td>
<td>8.4479</td>
<td>700</td>
<td>44.911</td>
<td>3479.6</td>
<td>3928.7</td>
<td>10.4028</td>
</tr>
<tr>
<td>130</td>
<td>21.825</td>
<td>2661.3</td>
<td>2879.5</td>
<td>8.9038</td>
<td>800</td>
<td>49.526</td>
<td>3663.8</td>
<td>4159.0</td>
<td>10.6281</td>
</tr>
<tr>
<td>140</td>
<td>24.136</td>
<td>2736.0</td>
<td>2977.3</td>
<td>9.1002</td>
<td>900</td>
<td>54.141</td>
<td>3855.0</td>
<td>4396.4</td>
<td>10.8396</td>
</tr>
<tr>
<td>150</td>
<td>26.445</td>
<td>2812.1</td>
<td>3076.5</td>
<td>9.2813</td>
<td>1000</td>
<td>58.575</td>
<td>4053.0</td>
<td>4640.6</td>
<td>11.0393</td>
</tr>
<tr>
<td>160</td>
<td>31.063</td>
<td>2968.9</td>
<td>3279.6</td>
<td>9.6077</td>
<td>1100</td>
<td>63.372</td>
<td>4257.5</td>
<td>4891.2</td>
<td>11.2287</td>
</tr>
<tr>
<td>170</td>
<td>35.679</td>
<td>3132.3</td>
<td>3489.1</td>
<td>9.878</td>
<td>1200</td>
<td>67.987</td>
<td>4467.9</td>
<td>5147.8</td>
<td>11.4091</td>
</tr>
<tr>
<td>180</td>
<td>72.602</td>
<td>4683.7</td>
<td>5409.7</td>
<td>11.5811</td>
<td>1300</td>
<td>72.602</td>
<td>4683.7</td>
<td>5409.7</td>
<td>11.5811</td>
</tr>
</tbody>
</table>

p = 0.01 MPa (45.81°C)

- v m³/kg: 0.3157
- u kJ/kg: 2567.4
- h kJ/kg: 2756.8
- s kJ/(kg·K): 6.7600

p = 0.05 MPa (81.33°C)

- v m³/kg: 0.3157
- u kJ/kg: 2567.4
- h kJ/kg: 2756.8
- s kJ/(kg·K): 7.5939

p = 0.10 MPa (99.63°C)

- v m³/kg: 0.8857
- u kJ/kg: 2529.5
- h kJ/kg: 2768.8
- s kJ/(kg·K): 7.2795

p = 0.20 MPa (120.23°C)

- v m³/kg: 0.8857
- u kJ/kg: 2529.5
- h kJ/kg: 2768.8
- s kJ/(kg·K): 7.1272

p = 0.40 MPa (143.63°C)

- v m³/kg: 0.3630
- u kJ/kg: 4683.2
- h kJ/kg: 5409.3
- s kJ/(kg·K): 10.1982

p = 0.60 MPa (158.85°C)

- v m³/kg: 0.3630
- u kJ/kg: 4683.2
- h kJ/kg: 5409.3
- s kJ/(kg·K): 10.6602

p = 0.80 MPa (170.43°C)

- v m³/kg: 0.1944
- u kJ/kg: 2583.6
- h kJ/kg: 2778.1
- s kJ/(kg·K): 5.8656

p = 1.00 MPa (179.91°C)

- v m³/kg: 0.1944
- u kJ/kg: 2583.6
- h kJ/kg: 2778.1
- s kJ/(kg·K): 5.8656

THERMODYNAMICS (continued)
P-h DIAGRAM FOR REFRIGERANT HFC-134a

(metric units)

(Reproduced by permission of the DuPont Company)
ASHRAE PSYCHROMETRIC CHART NO. 1
(metric units)
Reproduced by permission of ASHRAE
HEAT CAPACITY TABLES
(at Room Temperature)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Mol wt</th>
<th>(c_p) (kJ/(kg·K))</th>
<th>(c_v) (kJ/(kg·K))</th>
<th>(k)</th>
<th>(c_p) (Btu/(lbm·°R))</th>
<th>(c_v) (Btu/(lbm·°R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>29</td>
<td>1.00</td>
<td>0.718</td>
<td>1.40</td>
<td>0.240</td>
<td>0.171</td>
</tr>
<tr>
<td>Argon</td>
<td>40</td>
<td>0.520</td>
<td>0.312</td>
<td>1.67</td>
<td>0.125</td>
<td>0.0756</td>
</tr>
<tr>
<td>Butane</td>
<td>58</td>
<td>1.72</td>
<td>1.57</td>
<td>1.09</td>
<td>0.415</td>
<td>0.381</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>44</td>
<td>0.846</td>
<td>0.657</td>
<td>1.29</td>
<td>0.203</td>
<td>0.158</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>28</td>
<td>1.04</td>
<td>0.744</td>
<td>1.40</td>
<td>0.249</td>
<td>0.178</td>
</tr>
<tr>
<td>Ethane</td>
<td>30</td>
<td>1.77</td>
<td>1.49</td>
<td>1.18</td>
<td>0.427</td>
<td>0.361</td>
</tr>
<tr>
<td>Helium</td>
<td>4</td>
<td>5.19</td>
<td>3.12</td>
<td>1.67</td>
<td>1.25</td>
<td>0.753</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2</td>
<td>14.3</td>
<td>10.2</td>
<td>1.40</td>
<td>3.43</td>
<td>2.44</td>
</tr>
<tr>
<td>Methane</td>
<td>16</td>
<td>2.25</td>
<td>1.74</td>
<td>1.30</td>
<td>0.532</td>
<td>0.403</td>
</tr>
<tr>
<td>Neon</td>
<td>20</td>
<td>1.03</td>
<td>0.618</td>
<td>1.67</td>
<td>0.246</td>
<td>0.148</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>28</td>
<td>1.04</td>
<td>0.743</td>
<td>1.40</td>
<td>0.248</td>
<td>0.177</td>
</tr>
<tr>
<td>Octane vapor</td>
<td>114</td>
<td>1.71</td>
<td>1.64</td>
<td>1.04</td>
<td>0.409</td>
<td>0.392</td>
</tr>
<tr>
<td>Oxygen</td>
<td>32</td>
<td>0.918</td>
<td>0.658</td>
<td>1.40</td>
<td>0.219</td>
<td>0.157</td>
</tr>
<tr>
<td>Propane</td>
<td>44</td>
<td>1.68</td>
<td>1.49</td>
<td>1.12</td>
<td>0.407</td>
<td>0.362</td>
</tr>
<tr>
<td>Steam</td>
<td>18</td>
<td>1.87</td>
<td>1.41</td>
<td>1.33</td>
<td>0.445</td>
<td>0.335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>(c_p) (kJ/(kg·K))</th>
<th>(c_v) (kJ/(kg·K))</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg/m³</td>
</tr>
<tr>
<td>Liquids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>4.80</td>
<td>1.146</td>
<td>602</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.139</td>
<td>0.033</td>
<td>13,560</td>
</tr>
<tr>
<td>Water</td>
<td>4.18</td>
<td>1.000</td>
<td>997</td>
</tr>
<tr>
<td>Solids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.900</td>
<td>0.215</td>
<td>2,700</td>
</tr>
<tr>
<td>Copper</td>
<td>0.386</td>
<td>0.092</td>
<td>8,900</td>
</tr>
<tr>
<td>Ice (0°C; 32°F)</td>
<td>2.11</td>
<td>0.502</td>
<td>917</td>
</tr>
<tr>
<td>Iron</td>
<td>0.450</td>
<td>0.107</td>
<td>7,840</td>
</tr>
<tr>
<td>Lead</td>
<td>0.128</td>
<td>0.030</td>
<td>11,310</td>
</tr>
</tbody>
</table>